[bookmark: _Hlk128296004]Lesson 09: 		MyWPF on C:\X\CSChap09.sln		
 (
WPF Forms
TicTac
MouseDown
animation
WPFBlazor
GitHub
C
ommandline
FileHandling
Exception
)			
Windows Presentation Foundation (WPF)

https://youtu.be/exmSDeSEKlY	22:11 Up to drawing ellipse.

startXaml	xaml	 	 Binding

· File, New Project. 					

 (
WPF App(.NET Framework).
)

 (
Choose WPF Application. Call it
M
yWPF
 and click OK.
)

You may wish to immediately run the program ie:

 (
Click Run.
)

Our main window form appears:

Close the window or click
to stop.

If your design window (See next page) is not showing…

 (
…double-click on
MainWindow.xaml
.
)

 (
For source code projects: GitHub:
https://github.com/edthehorse/jack
Download (From Add File) and Unzip CSChapt10.
)
Code at https://github.com/edthehorse/jack/upload/main
Download zip and unzip it

· Note that in our design view the Window form was produced automatically.

 (
A Grid is also produced by default in the window. This is the
default
container for our controls - buttons and text boxes etc.)
)
 (
XAML (Extended Application Markup Language) is just a variant of XML. Lik
e XML it is simply a text file.
 (Great for emailing your form to another developer!)
Like XML (and HTML) it consists of opening and closing tags
eg

<
Grid

</
Grid
>
) xmlns="http://sc
 <Grid>
 </Grid>
</Window>

 (
Notice that the XAML
has been produced automatically
 - in particular for this Grid.
)

 (
MyWPF
 is the name I have given to
the
 project.
(
You will need to be very wa
r
y of this if copying code from elsewhere into your project.
)

)
 (
These 2
nd
 two lines of XAML starting with
xmlns
 are also produced automatically.
They specify the XAML
namespace
 (
xmlns
).
Basically,
 they contain the proper specification conventions for our XAML code.
Don’t edit them.

)

 (
There are two ways we can edit the
Height
and
Width

of our
Main Window for example
.
 1. By
directly editing the XAML code! and 2. Dragging the handles (on the
very outside
 of our window:
Watch the XAML change as you drag!

Try it.

Actually,
 there is a third way:

Programmatically
 as we shall see
 later
.
)

Take care that you are not dragging the grid. The grid and the Main Window are close together.

 (
(The UI
(User Interface)
and its xaml is called the “
View
”.)
) Main Window Grid

Note: If you click on their tag names in the xaml then the corresponding “graphic” will be respectively selected in the design window.

We can also resize the Grid (as well as the MainWindow):

 (
If you very carefully locate the Grid which is just inside the main window and drag it
,
 you will see
its
 XAML automatically change.
)

 (
T
he Name of the window
MainWindow
 is prefixed by the name of our namespace
MyWPF
. This is usually the name of our project
(
but
need not be
)
.

)

	
	<Window x:Class="MyWPF.MainWindow"
 	xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 	xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 	Title="MainWindow" Height="350" Width="525">
 	<Grid Margin="149,0,0,0">
 	</Grid>
	</Window>

Take a look at the first line of the XAML.
Class specifies the name of the class which is automatically produced - representing our window (MainWindow.) This class can be found in this file MainWindow.xaml.cs. Double-click on it to open it. See below for the code.

 (
You may wish to view
App.config
 and
App.xaml
. They don’t really concern us at the moment but
App.xaml
 contains the name of the startup form

 StartupUri
="MainWindow.xaml"

We can also place some “global” settings here eg
StaticResource
 – see later.
)

 (
MainWindow

is derived from
Window
.
Window

is in the
System.Windows
 namespace hence:
using
 System.Windows;

at the top of the code

)

 (
Time to reflect on what’s going on here. W
e
 have designed a form
.
 XAML has been produced automatically for us.
Also,

C# has automatically rendered
a
class

MainWindow

in this case
corresponding
 to our XAML

Class
="MyWPF.MainWindow
.
)
namespace MyWPF
{
 public partial class MainWindow : Window
 {
 public MainWindow()
 {
 InitializeComponent();
 }
 }
}

Controls

Make sure that your Toolbox is visible (View, Toolbox from the menu.)
Choose Common WPF Controls.

· Choose the MainWindow.xaml tab and drag a Button and a TextBox onto the grid.
 (
Run it now to show that it is working so far.
) (
We could use a Label instead of a TextBox
 -because we won’t be typing anything into our TextBox.
) (
You should see the XAML for the button and the text box produced dynamically
!
)

 (
Common mistake: Make sure you have the correct control
selected
 when you assign a property!
)
1. With the text box selected,
from the menu choose View,
 (
2.

Name it
textBox1
.
)Properties. or you can
 just press F4.)

 (
You should see the corresponding XAML code appear.
We could instead have changed it in the XAML by typing
Name
="textBox1"
 as above.
).

 (
Take a look at the button XAML:There was no Name until we named it.
<
Button

 Content
="Button"
 HorizontalAlignment
="Left"
 Height
="49"

Margin
="82,168,0,0"
 VerticalAlignment
="Top"
 Width
="155"/>

(The Name will only appear in the XAML if we
change
 the name - as we did for the textbox.)
)

Add an Event Handler for the button as follows:

· (
The name of
the
 button is
button1

(Nowadays it is
Button1
!)
by default
,

so the name of the event will be
private

void

b
utton
1
_Click
 etc.
)
)IN Design View, double-click on the button. This Click event handler appears.

· Type this into the button1_Click event:
 (
(
We could also create an event handler stub by going to Properties of the Button, selecting Events and then double-clicking on the Click event.
)
) (
Note that as we start to
type,
 we are given the name of the Text Box

textBox1
.
Double-click
 on the name (or just type the full stop) to accept it and continue to type the code below.
)

 private void button1_Click(object sender, RoutedEventArgs e)
 {
 textBox1.Text = "Hello";
 }

· Build and Run.

 (
Hello appears.
Click the button.
)

Once again take note where our code was automatically produced – in the MainWindow.xml.cs file – in our MainWindow class.

namespace myWPF
{
 public partial class MainWindow : Window
 {
 public MainWindow()
 {
 InitializeComponent();
 }
 private void button1_Click(object sender, RoutedEventArgs e)
 {
 textBox1.Text = "Hello";
 }
 }
}

We are drawing controls onto a form. The XAML is produced automatically, and the corresponding code is produced automatically in the corresponding Main Window .cs file!

Delete our button and text box controls. The XAML will be conveniently automatically deleted as well! (We could just as well have just deleted the XAML instead!) but note that we must especially delete the event handler code ourselves manually as well!

 private void button1_Click(object sender, RoutedEventArgs e)
 {
 textBox1.Text = "Hello";
 }

Alternatively---

We could also create a new event by going to the XAML
		 and typing (anywhere!) in the here Click=

		
					whereupon we are prompted for a <New Event Handler> etc.

and… quite miraculously the code is automatically generated in the corresponding .cs file:

private void Button_Click(object sender, RoutedEventArgs e)
{ 								
}
[bookmark: startXamal][bookmark: MouseDown]
MouseDown Event			MyWPF on CsChsp08.sln

 (
If we click on a grid…
We get the pixels left & down. (The grid is 300x300.)
)

 <Grid x:Name="GameGrid" Height="300" Width="300" Margin="50,50,0,0"
 MouseDown="GameGrid_MouseDown" Background="#FFCCE8E6" >
 </Grid>

(Apparently we need a grid BackGround for this to work!)

private void GameGrid_MouseDown(object sender, MouseButtonEventArgs e)
 {
 Point P = e.GetPosition(GameGrid);

 MessageBox.Show($"X = {P.X.ToString()} Y = {P.Y.ToString()}");
 }

(We will use this event later in our TicTac game.)

XAML									
	<Grid Height="200" />
 (
Grid
is an

Element
Height
is an Attribute
)
The above could alternatively be written as:

 <Grid Height="200">
 </Grid>

In both of these cases, note that a value is written in quotes eg "200".

We could also write this as:

 <Grid>
 (
But n
ow the value
need not be a string
!
) <Grid.Height>
 200
 </Grid.Height>
 </Grid>
			

In all cases the height of our grid will be 200.

Ref: https://www.tutorialspoint.com/wpf/wpf_xaml_overview.htm
https://www.tutorialspoint.com/xaml/xaml_quick_guide.htm

Or better Microsoft.
https://learn.microsoft.com/en-us/dotnet/desktop/wpf/xaml/?view=netdesktop-7.0

To Comment Code:

<!-- -->

Select the code that you want to comment.

 (
Click the Comment button.
)

Or use the control keys as suggested.

The selected code has become commented:

<Grid
 <!-- <TextBlock Name="textBlock1" Margin="0,185,140,46" FontSize="20">
 The <Bold> cat</Bold> sat on the mat
 </TextBlock>-->
</Grid>

Hint: You will find that you can’t comment within tags. So - Do it outside the tag and you can then drag it in or beside the tag.

To Uncomment: Ctrl-K Ctrl-U

Grid Properties: 	A grid consists of cells.
A 1 x 1 grid is created by default ie 1 cell & 1 columns ie a single rectangle.

· With the grid selected view the Properties. (Press F4)
 (
If you can’t see your design Window double-click on
MainWindow.xaml
.
)
 (
Finding properties is not always easy. Probably best to categorize them by name by choosing
Arrange by Name
.
Click
RowDefinitions
 ellipses button. (Since we may specify many row widths we will specify a C
ollection
.
)

 (
Click Add 3 times.
Star means that the heights will adjust automatically at design-time.
)

We get 3 rows:

 (
(It
is

probably
easier to just
type
 the xam
l as below!)
)

 and the corresponding XML:

<Grid HorizontalAlignment="Left" Height="533" Margin="6,-13,0,0"
 (
 The
<
Grid.RowDefinitions
>
 tag
s

indicates that we have a
collection
 (of rows here).
)
VerticalAlignment="Top" Width="653">
 <Grid.RowDefinitions>
 <RowDefinition/>
 <RowDefinition/>
 <RowDefinition/>
 </Grid.RowDefinitions>

</Grid>

 (
Choose Pixel etc.
)To make a row fixed width:

 (
 50 pixel fixed height.
)

 (
Hint: You can click just outside the margin to set a row (& column).
)

and the corresponding xaml:

 <RowDefinition Height="50"/>
 <RowDefinition/>
 <RowDefinition/>

Auto

Will accommodate size of controls.

Variable width is denoted by an asterisk(*)

Other Containers:

Our XAML produced so far has an opening and closing Grid elements by default:
 <Grid>
</Grid>
The grid is a type of container which can hold controls.There are other containers that our main window can have: (Actually, we are only allowed to place only one control directly onto our main window ie if we do not have a container.)

We can also have a StackPanel, Canvas etc see below.
They all have different behaviours when the Window is resized etc.

We have seen that with a Grid, child elements can be arranged in tabular form

https://wpf-tutorial.com/panels/introduction-to-wpf-panels/ Introduction to WPF panels

The DockPanel

 (
Use the DockPanel whenever you need to dock one or several controls to one of the sides


The Canvas control
)

 (
The
WrapPanel
 will position each of its child controls next to the other, horizontally (default) or vertically, until there is no more room, where it will wrap to the next line and then continue..


The Canvas control
)

The WrapPanel control

 (
In a stack panel, child elements can be arranged in

a single line, either

horizontally or vertically, based on the orientation property.


The Canvas control
)The StackPanel control

 (
Canvas allows you to assign specific coordinates to each of the child controls, giving you total control of the layout. Nothing will appear til you give some coordinates.
the child elements can be positioned explicitly using coordinates that are relative to the
Canvas
 any side such as left, right, top and bottom.
)

The Canvas control

(Used often.)

UniformGrid 				UniformGrid in CSChap09.sln

 (
The UniformGrid is just like the Grid

but
a
ll rows and columns will
automatically
have the same size
.
)<UniformGrid x:Name="GameGrid"

 Width="300" Height="300"
 Rows="3" Columns="3" >

<UniformGrid.Background>

 <ImageBrush ImageSource="Assets/Grid.png"/>

</UniformGrid.Background>

</UniformGrid>

Unfortunately, the grid lines are not visible.

Exercise: Place an image at the top left (so we might then be able to make out make the top left cell.)

Use: <Image Source="Assets\O15.png"></Image>

and place the image O15.png in an /Assets folder.

Make sure that image is designated as a Resource:

(We will use this event later in our TicTac game.)

Using 3rd party XAML to make a control:

As well as drawing controls using the ToolBox as we have just done, we can simply cut and paste code for them! For example, we may cut and paste from this site:

Visit http://www.c-sharpcorner.com/beginners/

Mahesh Chand CSharpcorner (v good)

Accordion in WPF Toolkit
AutoCompleteTextBox in WPF
AutoComplete Folder TextBox in WPF
Area Chart in WPF
Bar Chart in WPF
Button Control in WPF
Border in WPF
Canvas in WPF
 (
eg Choose
Ellipse in WPF
 and then cut and paste the code from here between our
Grid
 tags as shown below:
<
Grid
>
<
Ellipse

 Width
="200"

 Height
="100"

Fill
="Blue"

Stroke
="Black"

StrokeThickness
="4" />
</
Grid
>
WPFApp1 in CSAChap09.sln
)CheckBox in WPF
Calendar in WPF
Closable Tab Control in WPF
Column Chart in WPF
ComboBox in WPF
DatePicker in WPF
DockPanel in WPF
Drawing Brush in WPF
Ellipse in WPF
Expander Control in WPF
Focus Manager in WPF
GridView in WPF
Grid in WPF
Hyperlink in WPF
Icon in WPF
ImageBrush in WPF
Image Viewer in WPF
Label in WPF
Line Chart in WPF
Line in WPF			eg Choose Line in WPF
ListBox in WPF

Place the Line code with this (Between the <Grid> tags.) as shown:
WPfApp1
[bookmark: _Hlk128430273]<Grid Margin="0,0,19,-1">
[bookmark: _Hlk128382789] <Line
 X1="50" Y1="50" 			Result:
 X2="200" Y2="200"
 Stroke="Red"
 StrokeThickness="4" />
</Grid>

Using code to make a control: 	WPfApp1 See https://youtu.be/exmSDeSEKlY end.

We can achieve exactly the same thing (ie placing a line) with code!

First delete the above XAML that you just added. Copy this code from the previous web page or copy it from here and paste it as shown below in MainWindow.xaml.cs.

 public partial class MainWindow : Window
 (
T
he
 code will be called from the
MainWindow()
 constructor ie when the program is run and the window appears.
(
Alternatively we could make a button and call
 CreateALine()

f
r
om there.

)
) {
 public MainWindow()
 {
 InitializeComponent();
 CreateALine();
 }
 public void CreateALine()
 {
 (
If there are such inconsistencies when copying and pasting code
,
 we will get an error message:
"The name 'InitializeComponent' does not exist in the current context".
) // Create a Line
[bookmark: _Hlk128382815] Line redLine = new Line();
 redLine.X1 = 50;
 redLine.Y1 = 50;
 redLine.X2 = 200;
 redLine.Y2 = 200;

 // Create a red Brush
 SolidColorBrush redBrush = new SolidColorBrush();
 (
using
 System.Windows.Media;
using
 System.Windows.Shapes;
) redBrush.Color = Colors.Red;

 // Set Line's width and color
 (
Note how when we name a control it is given the prefix
x
.
Recall that
x
 was the name of our class’s namespace:
xmlns
:
x
="http://schemas.

etc
 /xaml"
) redLine.StrokeThickness = 4;
 redLine.Stroke = redBrush;

 // Add line to the Grid.
 LayoutRoot.Children.Add(redLine);
 }
 (
LayoutRoot
 is the name that the author has given to his Grid.
 From the Grid’s properties change the name of your grid to
LayoutRoot
.
 (You should
now
see this in your XAML:

<
Grid
 x
:
Name
="LayoutRoot">
.)
)}

Run the code. You should get a red line as previously.

https://learn.microsoft.com/en-us/dotnet/desktop/wpf/graphics-multimedia/shapes-and-basic-drawing-in-wpf-overview?redirectedfrom=MSDN&view=netframeworkdesktop-4.8

1. Exercise. Follow the article ScrollBar in WPF 	Scroll in CSChap09.sln
· Write some event code which will show the value of the scroll bar in a label as the scroll bar button is moved.

Hint: First ascertain the Name of the scroll bar and then use its Value property as an indication of the scroll button's position horizontally…
…and create a Scroll event stub:

· Change the Content property of the label ie change its "caption". (See over)

[bookmark: xaml]
More XAML:

The Content property

Content replaces the “Caption“ property of the old Windows Forms and Buttons.

 <Grid>
 <Button Content="Press" Margin="78,19,290,146" />
 </Grid>

Placing images etc on a button

But Content is more than just a caption….

… eg it could be an image or even a StackPanel of a command button as below:

 <Grid>
 <!-- Setting the Content property using property element syntax -->
 <Button Height="80" Width="100">
 <Button.Content>
 <StackPanel>
 <Ellipse Fill="Red" Width="25" Height="25"/>
 <Label Content ="OK!"/>
 (
Anything that is contained between the control name tags (
Button
 in this case) is content. This is true for any controls that have a
Content
 property.
) </StackPanel>
 </Button.Content>
 </Button>
 </Grid>

 (
We can safely remove the
<
Button.Content
>
 and
</
Button.Content
>
 tags since this is what is
implicitly
 between
Button
 element tags - in this case so there is no need to include it.
)

Good XAML Reference: 	http://www.blackwasp.co.uk/XAML.aspx (v good does styles etc)and

https://wpf-tutorial.com/xaml/basic-xaml/

Begin: A page is usually used in navigation-style WPF applications, whereas a window is used for standard windows and dialog boxes

Markup Extensions

Markup extensions are dynamic placeholders for attribute values in XAML. They resolve the value of a property at runtime. Markup extensions are surrounded by curly braces (Example: Background="{StaticResource NormalBackgroundBrush}"). WPF has some built-in markup extensions, but you can write your own, by deriving from MarkupExtension. These are the built-in markup extensions:

eg 		Styles

<Window x:Class="myWPF.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Height="350" Width="525">

 <Window.Resources>
 <Style TargetType= "Button" x:Key = "myButtonStyle">
 <Setter Property = "FontSize" Value = "16"/>
 <Setter Property = "Foreground" Value = "Red"/>
 </Style>
 </Window.Resources>

 <Grid>
 <Button Margin="168,119,250,152" Style= "{StaticResource myButtonStyle}">
 Help
 (
StaticResource
 means we are referencing a resource and
myButtonStyle
 is the key for that resource.
) </Button>
 </Grid>
 </Window>

 (
Every button
 created will have this style if it uses:
Style
= "{
StaticResource

myButtonStyle
}"
)

References:

https://www.youtube.com/watch?v=2Dcq0ZI-2-w&list=PLI-F7ydFjNpC2lJ6UI-ZA2FnwR3fiP1IZ&index=5

 (
Advantage of WPF over Forms:
1. XAML which is a text file specification of a form (see later) provides a more expedient way of producing a form.
2. The many skills necessary to produce rich forms eg GDI, Direct X, Media Player are unnecessary with WPF. These are taken care of with WPF without requiring these extra programming skills.
)
https://www.youtube.com/watch?v=0rcHiV8qS9g&list=PLI-F7ydFjNpC2lJ6UI-ZA2FnwR3fiP1IZ&index=4

[bookmark: binding]
BINDING: Binding CSChap09.sln on QW .

Recall how we bound a TextBox to Command Button.

MainWindow.xaml

 (
Consider this after “Events”.
Only difference is that
Button
 Click
 is called from Xaml.
) (
<
Window
 x
:
Class
="myWPF.MainWindow"
etc

<
Button
 Click
="
Button_Click
"

etc
/>

<TextBox x:Name="textBox1" etc/>
etc
</
Window
>
)

 (
Button_Click
"

i
s bound.
Behind the scenes
binding
!
)
 MainWindow.xaml,cs

 (
namespace
 myWPF
{
etc
private

void

Button_Click
(
object
 sender, RoutedEventArgs e)
{
 textBox1.Text =
"Hello"
;
}
etc
}
)

These 2 files are independent! (Loose coupling.)

Developers could work upon each independently.

BINDING cont’d: Binding Between TextBox Controls Binding1 project in Lesson9.sln on QW.	

Make a form below with a text box and a label. testWPF.sln C:\Chap09 on QW

The following example shows a label whose Content is bound to the Text of the textbox. When you type text into the text box and the binding markup extension automatically updates the content of the label. ie no code required.

Draw twoTextBoxes.

<Grid>

<TextBox Name = "TB1" Width="150" Margin="287,50,363,335" />

<TextBox Name = "TB2" Width="150" Margin="287,120,363,265"
Text = "{Binding Text, ElementName=TB1}"/>
 (
Mode
=TwoWay
is the default. Type it in here (preceded with a comma) – it won’t make any difference.
)
</Grid>

 (
Now if we type some text into the
upper
text box it immediately appears in the
lower textbox
)

Now type some text into the lower text box. It is not immediately updated in the upper text box.

We need to click into the upper text box ie give it the focus before it is updated.

To remedy this, include this code:

<TextBox Name = "TB2" Width="150" Margin="287,120,363,265" Text = "{Binding Text, ElementName=TB1 , UpdateSourceTrigger=PropertyChanged}"/>

Now any change in either text box is immediately! reflected in the other

Binding between Form and a Control (TextBox)

The Windows’ (Form’s) DataContext.		SimpleFormDC in Chap09

Take a look at the Form’s properties:

Make sure you select the (outer) Window and then press F4.

 (
A
DataContext
 of a Form is a code representation of its properties.
Other controls eg text box have DataContexts as well.
) (
We wish to bind the Title property to a Control (textbox) on the form so that….
)

 (
… when we type in the textbox, the Title will be dynamically updated.
)

Currently, the Form’s properties are not available for Binding. To make them so we must set the Form’s DataContext to these properties like so:

 public MainWindow()
 (
In the context! Of the Form,
this
 represents the Form itself.
) {
 InitializeComponent();
 this.DataContext = this;
 }

In the XAML we can now bind the Title property to the textbox to the Title property of the Form’s data context like so:

<Grid>
<TextBox Text="{Binding Title, UpdateSourceTrigger=PropertyChanged}" Margin="65,7,129,81" />
</Grid>

It is interesting to single-step this line to see the DataContext assignment before and after.

Binding other Form Properties. https://wpf-tutorial.com/data-binding/using-the-datacontext/

eg the Window’s Height and Width:

 <Grid >
 <TextBox Text="{Binding Title, UpdateSourceTrigger=PropertyChanged}" Height =" 45" Margin="66,7,193,207" />
 <TextBox HorizontalAlignment="Left" Height="33" Margin="26,106,0,0" TextWrapping="Wrap" Text="{Binding Width}" VerticalAlignment="Top" Width="80"/>
 <TextBlock HorizontalAlignment="Left" Height="33" Margin="129,106,0,0" TextWrapping="Wrap" Text="x" VerticalAlignment="Top" Width="51"/>
 <TextBox HorizontalAlignment="Left" Height="33" Margin="154,0,0,0" TextWrapping="Wrap" Text="{Binding Height}" VerticalAlignment="Center" Width="50"/>
 </Grid>

Resize and the text boxes update

Summary:

Simply set the form’s datacontext to the form! And all its (binding) properties are available.
 ie this.DataContext = this; // Need this cause the window(form) does not default to its own DataContext.

and the text boxes will be bound to all of the Windows properties.eg Binding Opacity

--
More on DataContext binding

https://www.youtube.com/watch?v=w1bSbSfes6o

UnderstandingINotifyPropertyChanged.sln

Timer 		WPFTimer on C:\X\CSCHAP09 solution.

 (
For Timer see:

https://www.c-sharpcorner.com/UploadFile/mahesh/timer-in-wpf/
)

.

<Grid>
<Label Name="lblTime" FontSize="48" HorizontalAlignment="Center" VerticalAlignment="Center" />
</Grid>

 (
Calls into the Framework which calls back to our
my
timer_Tick
.
)public MainWindow()
 {
 InitializeComponent();

 DispatcherTimer timer = new DispatcherTimer();

 timer.Interval = TimeSpan.FromSeconds(1);
 timer.Tick += mytimer_Tick; // Goes off every tick.
 timer.Start();

 }
 void mytimer_Tick(object? sender, EventArgs e)
 {
 lblTime.Content = DateTime.Now.ToLongTimeString();
 }

 (
(Label here is in the scope of MainWindow.)
)

[bookmark: TicTac]
WPF TicTacToe 			See WPFTicTac in Chap09.sln

https://www.youtube.com/watch?v=OHRWRpT9WcE

Download Zip
GitHub Repository: https://github.com/OttoBotCode/Tic-Ta...
or mine: https://github.com/edthehorse/jack

To make a Basic TicTac grid:

See WPFTicTac1 in Chap09.sln.

 (
A “hash” image is superposed onto a 3x3 UniformGrid which is inside a Canvas.
The grid.png image should be placed in an Assets folder.
)

 <Grid>
 <Canvas
 Width="300" Height="300" Margin="20">
 <UniformGrid x:Name="GameGrid"
 Width="300" Height="300"
 Rows="3" Columns="3" >
 <UniformGrid.Background>
 <ImageBrush ImageSource="Assets/Grid.png"/>
 </UniformGrid.Background>
 </UniformGrid>
 </Canvas>
 </Grid>

 (
Also
,
 the Background of the Window is set to a custom colour.
Background
="{
StaticResource
 BackgroundColor
}"
… and in App.xaml insert:

<
Application.Resources
>

<
SolidColorBrush
 x
:
Key
="BackgroundColor"
 Color
="#f48a2e"/>

</
Application.Resources
>
)

async & await See next chapter.
eg
async void OnGameEnded
……….
await ShowLine says wait for me to render the line on the UI (ie the grid).

How His game board is animated.

1st just draw

ie Just run the game and this appears.
Not from code/animation – XAML!

Then: End of Game: -> Animations:

 (
Line is animated.
)

2.FadeOut End-of-game screen and

3.Fade in/out the Winner screen and

3.Then fade in new game.

See commenting WPFTicTac on Chap09.sln

//Summary of C:\Users\User\Desktop\XandYOz\X\WPFTicTac
//XAML sets up the grid. and
//<StackPanel x:Name = "TurnPanel"
//< Image x: Name = "PlayerImage"
//< Canvas x: Name = "GameCanvas"	
//< UniformGrid x: Name = "GameGrid"
//< Line x: Name = "Line"
//etc are referred to by the .cs

In the code:
//Set up a 3x3 Image holder grid corresponding to the array GameGrid)

//The Grid fades out after game is complete into the “Play Again ?” screen and then onto a new grid.

//The other animation is the animation of the X & O’s using keyframes.

//Upon clicking on the grid with say an X then both the array GameGrid and the corresponding grid square are updated.

Enums

 public class WinInfo
 {
 public WinType Type { get; set; }// Row,column, diag , none
 public int Number { get; set; }// No. of the row/column.
 }

where

public enum WinType
 {
 Row, Column, MainDiagonal, AntiDiagonal
 }

Also

public enum Player
 {
 None, X, O
 }

public Player[,] GameGrid { get; private set; } // contains X,O,none
eg
{ { X O X} ,
 { X O X} ,
 { X O X} }

[bookmark: GitHub]
 (
GitHub
Zip the project before uploading.
https://github.com/edthehorse/jack
)

 (
Tuples
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/value-tuples
(
int
,
int
)[] squares
foreach
 ((
int
 r,
int
 c)
in
 squares)
// All the 9 squares. Tuple?
 {
)

 (
Dictionary
See Chapt 10.
)

Exercise 				WPFTicTacBare on CSChap09.

Using the WPFTicTac code, make a basic program which places an ”O” wherever we click on the grid.

We will place the “O” image on the grid - without animation.

Hints:

Copy some of his xaml code from MainWindow.xaml to make the UniformGrid.

Use his image O15.png which is placed in a (new) Assets folder.

Use his array of Image controls:

private readonly Image[,] imageControls = new Image[3, 3];

Use his MouseDown event to ascertain the row & column in his 3x3 grid.

private void GameGrid_MouseDown(object sender, MouseButtonEventArgs e)
 {

imageControls[row, col].Source = new BitmapImage(new Uri("pack://application:,,,/Assets/O15.png"));

To Test For a Win 			WPFTicTacBare1 on CSChap09	

Exercise: For the moment, just test the top row!

Hint: In the MouseDown use

if (imageControls[row, col].Source != null)

In practice this is not a good technique ie testing for null image etc.

Better: Is to use an array which mirrors the state of the image controls. He uses public Player[,] GameGrid // contains X,O,none in order to do this
where Player is an enum:
public enum Player
{ None, X, O }

Exercise: Check for all winning combinations.

For the winning logic see https://www.youtube.com/watch?v=gTt1iqVs0_U
(He uses a simple console app and he uses a ONE dimensional array)

WPFTicTacBare1 in C:\X\CSChap09

Exercise: WPFTicTacBare2 in C:\X\CSChap09

Use WPFTicTacBare1 to make a (non-animated) game.

No need to check if there’s already an O or X already on a square that we click.

Just MessageBoX “Winner” for the moment if either X or O wins.

[bookmark: animation]
To Animate 		

Exercise: Animate the placement of the O in the top left:

See WPFAnimateXO in C:\X\Chap09.sln 		see comments is OK.

Basically objKeys holds 16 images of O.

 objKeys.Duration = TimeSpan.FromSeconds(2); // Total animation duration.

 Uri oUri = new Uri($"pack://application:,,,/Assets/O{i}.png"); // Respective locations of O1.png etc. 16 of them.

 BitmapImage oImg = new BitmapImage(oUri); // Create respective bitmaps.

then imageControls[0, 0].BeginAnimation(Image.SourceProperty, objKeys);

evenly spaces the time between images.

To Draw an Animated Line:

C:/X/WPFTicTac on Laptop. See comments

[bookmark: todo]C:/X/WPFTicTac on QW PC. See comments See WPFAnimationLesson

Called by an event.

return (new Point(0, y), new Point(GameGrid.Width, y)); // Return the line ends coords (0,50) (300,50).

private async Task ShowLine(WinInfo winInfo) // Draws an animated line (at top).
{
 (Point start, Point end) = FindLinePoints(winInfo); // tuple
 // 0,50 300,50
 (
Stage1. Set the line start,
) Line.X1 = start.X; // 0
 Line.Y1 = start.Y; // 50

 DoubleAnimation x2Animation = new DoubleAnimation // Animate the line X.
 {
 Duration = TimeSpan.FromSeconds(.25), // Lasts for 1/4 sec.
 (
Stage2. Set the animation parameters.,
) From = start.X, // 0
 To = end.X // 300
 };

 DoubleAnimation y2Animation = new DoubleAnimation // Animate the line Y.
 {
 Duration = TimeSpan.FromSeconds(.25),
 From = start.Y, // 50
 To = end.Y // 50
 };

 Line.Visibility = Visibility.Visible;

 (
Stage3. Call the animation.
) Line.BeginAnimation(Line.X2Property, x2Animation); // Animate the line.

 Line.BeginAnimation(Line.Y2Property, y2Animation);

 await Task.Delay(x2Animation.Duration.TimeSpan); // .25 sec
}

Where Line is defined:

 <Line x:Name="Line"
 Stroke="{StaticResource LineColor}"
 StrokeThickness="10"
 StrokeStartLineCap="Round"
 StrokeEndLineCap="Round"
 Visibility="Hidden"/>
 (
BeginAnimation(PropertyToBeAnimated, TimeLineForTheAnimation)
)
[bookmark: WPFBlazor]
WPFBlazor

https://www.youtube.com/watch?v=v1NBBZz5izs

https://github.com/carlfranklin/WpfBlazor

Introduces a browser to WPF
“WPF can do more things than Blazor can do.”
He makes a WPF app!!

Copy Always is important.

C:
\X\WpfBlazor-master on QW see comments C:
\X\WpfBlazor-master on laptop

The WPF : MainWindow.xaml:

<!--PUT THE WPF PAGE ON THE WEB!!-->

<blazor:BlazorWebView

 HostPage="wwwroot/index.html"
etc
</blazor:BlazorWebView>

serviceCollection.AddBlazorWebView();

File Handling		page 526 C# 21 Days 	=FileHandling on C:\X\CSChap09 (uncomment)
https://github.com/edthehorse/jack
C#Ch8FileHandling.avi: 		https://youtu.be/5sTlToVY7eQ
-> binary files
 (
What is a Stream
?
An object oriented representaion of our (flat) file.
 See below:
)Sometimes we need to save our data onto disk. For example, we might save some lines of text or perhaps a set of numbers or even a picture (bitmap).

	output
	write
			
	input
 (
StreamWriter
 is a class. R
ight-click on it and
take a look. eg Find the
Close
 method of that class.
)	read
 Memory 					Hard disk

Text Files (
File
 is a class located within the
System.IO
 namespace.
) Writing:
 (
CreateText
 is a static method of the
File
 class. It creates a text file.
)
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]using System;
using System.IO;
public class Writing
{
 public static void Main()
 {
 (
Writes to the file.
) StreamWriter myFile = File.CreateText("C:\\temp\\text.txt"); 		myFile.WriteLine("about time");
 myFile.Close();
 }
}

 (
Beware: When we open a file for output, it will
write over any data
 that was there before.
Confirm this – save the file as above but with different data.
)

As mentioned, the stream (myFile in this case) is an object-oriented representation of the file (of characters).
<- Accordingly, it has properties and methods.

<-property (spanner)

<-method (box)

Interestingly if you wish to see the actual code for eg Writeline you can find the (overloaded) methods by
 (
Right-click on
StreamWriter
 and choose Go to Definition but …
… right-click on its base class
TextWriter

and then do a Ctrl-F to find WriteLine
…
)

.. to find the overloaded WriteLine methods eg

 public virtual void WriteLine()
 {
 Write(CoreNewLine);
 }
 public virtual void WriteLine(char[] buffer, int index, int count)
 {
 Write(buffer, index, count);
 WriteLine();
 }

Text Files Reading:
 (
You may wish to view the file File,Open etc (or use NotePad to view the file.)

– or double-click on it.
)
using System;
using System.IO;

[bookmark: OLE_LINK3][bookmark: OLE_LINK4]class Test
{
 public static void Main()
 (
Peek

is a method which
 returns the next character to be read in the form of an integer. If there are no more characters
,
 then -1 is returned.
) {
 string path = @"c:\temp\text.txt";

 StreamReader sr = new StreamReader(path);
 {
 while (sr.Peek() >= 0)
 {
 Console.WriteLine(sr.ReadLine());
 }
 }
 }
 }

To View Our File as Binary

If you have full version Visual Studio: To view our hex executable file use:

 (
Open With…
)File, Open, File… then

 (
Choose Binary Editor.
)

 (
To view the ascii list visit:
http://www.ascii.cl/
)

 (
The two bytes
0
d
 0
a
 indicate the end of a text file
.
) (
These bytes are the ascii equivalents of the string. eg hex 61 is 97 which is a.
)

Write and read 		FileHandling on C:\X\CSChap09 (uncomment)
 (
using
 System;
using
 System.IO;
class

Test
{

public

static

void
 Main()
 {

string
 path =
@"c:\
t
ext.txt"
;

try
 {

if
 (
File
.Exists(path))
 {

File
.Delete(path);
 }

using
 (
StreamWriter
 sw =
new

StreamWriter
(path))
 {
 sw.WriteLine(
"about time"
);

 }

using
 (
StreamReader
 sr =
new

StreamReader
(path))
 {

while
 (sr.Peek() >= 0)
 {

Console
.WriteLine(sr.ReadLine());
 }
 }
 }

catch
 (
Exception
 e)
 {

Console
.WriteLine(
"The process failed: {0}"
, e.ToString());
 }

finally
 {

 }
 }
}
) (
Peek

is a method which
 returns the next character to be read in the form of an integer. If there are no more characters then -1 is returned.
)
 (
using
 is just a method of making sure that an object automatically goes out of scope when the
using
 block finishes.
) (
Stream
s are representations of “flat” files

as objects
 of the
StreamWriter
 class.
) (
StreamWriter
 and
StreamReader
 classes are used to create stream objects which are then used to transfer data to and from the opened file.

)
Binary Files 			BinaryFiles (WPF) on CSCHap09

We saw for text files that letters eg a and b are written as their ascii equivalent – and so are the numbers eg 1 is written as 49 (or hex 31). But for a binary file 1 is written as 1 ie numbers as numbers.

Writing

· (
To add a console
window
to a WPF:
Right click on the project, "Properties", "Application" tab, change "Output Type" to "Console Application", and then it will
also
 have a console.
)Run this:

using System;
using System.IO;

class MyStream
{
 public static void Main()
 {

FileStream myFile = new FileStream("C:\\temp\\binFile", FileMode.CreateNew);

 BinaryWriter bwFile = new BinaryWriter(myFile);

 (
See
 page 532 C# 21 days.
) // Write the data
 		for (int i = 0; i < 10; i++)
 		{
 		bwFile.Write(i);
 (
Close the stream as well as the file itself.
) 		}
 bwFile.Close();
 myFile.Close();
 }
 }

 (
Each number eg 2 is written as a four byte integer.
)

To avoid an error if the file already exists, we could use at the start:

 string path = @"c:\temp\binFile";

 (
ie
D
elete it if it exists. Take care!
) if (File.Exists(path))
 {
 File.Delete(path);
 }

Reading Binary File				https://www.dotnetperls.com/binaryreader

To read back our binary file:

using System;
using System.IO;

class MyStream
{
 public static void Main()
 {
 string path = @"c:\temp\binFile";

 FileStream myFile = new FileStream(path, FileMode.Open);

 BinaryReader br = new BinaryReader(myFile);

 // Read data
 for (int i = 0; i < (int)br.BaseStream.Length/sizeof(int); i++)
 {
 int b = br.ReadInt32();
 (
br.BaseStream.Length/
sizeof
(
int
)
will give us the
number
 of integers.
)
 Console.WriteLine(b);
 }

 br.Close();
 }
}

Note: FileHandling is better handled using Async Access
see CSLesson10ver7.docx AsyncWriteFile link etc.

[bookmark: commandline]
Running Programs from the Command Line 	CommandLineDemo on CSChap09 on C:\X

Make a simple program to print hello to the screen as below. (Make exp.sln). For convenience locate the solution in a convenient folder eg c:\temp.

using System;

namespace exp
{
 class Program
 {
 static void Main(string[] args)
 {
 (
DOS Commands
:

(Not case sensitive.)
cd\
 will change to the root directory.
cd temp
 will change to the temp directory.
dir
 will list what’s in the current directory.
The
up-arrow key
 will retrieve the previous DOS command.
) Console.WriteLine("hello");
 }
 }
}

To Run it from the Command Line.

· Open the Command Prompt window.
(You may need to do type cmd in the Windows run box to find it) and navigate to the file as follows:

· Type cd\ and <Enter> to change to c: (the root directory).

CD C:\X\CSChap09\CommandLineDemo\bin\Debug\net6.0

Then:
 (
(You might
 also
 like to double-click on the file to run it.)
Our program executes.
)

We now wish to pass some arguments to our executable so that we can say hello to whoever we choose.
		We should also have:

using System;

namespace exp
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Hello " + args[0].ToString());
 }

 }}
 (
ed

is concatenated
.
)

To Set the Command Line Arguments from the IDE

 (
Choose Project and the exp Properties… at the bottom of the menu drop down.
)

 (
Type the command line argument here.
)

Now if we run from Visual Studio (not from the command line) we get

 (
Hello ed

appears
as before
.
)

[bookmark: Exception]Exception Handling 		Exceptions on CSChap09	Chapter 9 C#21 days

An Exception is a run-time error. ie an error which occurs when the program is running.

namespace Exceptions
{
 internal class Program
 {
 static void Main(string[] args)
 {
 (
Whenever there is the possibility that some code may produce an error at run-time, then we place it in a
try
 block with…
)
 int y = 6; int x = 0;

 try
 {
 		int z = y/x;

 		Console.WriteLine(x.ToString());
 (
… a corresponding
catch
 block which will deal with that erro
r.
)
 }

 catch (Exception e)
 {
 	Console.WriteLine($"ERROR: {e.Message}");
 }

 finally
 {
 	Console.WriteLine("Always do this error or not.");
 }

 Console.WriteLine("And this");
 }
 }
}
	

Change the above line to 	int y = 6; int x = 3;

Result:

Try just

Console.WriteLine($"ERROR: {e}");

We get the information about the error in its totality:

In the above, note the specific error System.DivideByZeroException.

We could use that to catch the error specifically:

catch (DivideByZeroException e)
{
 // etc
}

 (
StackTrace

will just tell you where the error occurred
Console.WriteLine(
$"ERROR:
{e.StackTrace}
"
);
)

Try it without any error handling:

:

A list of exceptions can be found here:
https://www.completecsharptutorial.com/basic/complete-system-exception.php

 (
Strings which are possible null.
using
 System;
class

TryIt2
{

public

static

void
 Main()
 {

String
?
 s =
"ed"
;

Console
.WriteLine(s
!
.ToUpper());
 }
}
)

 (
?
 warns that
s
 may be null.
The null forgiving operator
!
 makes the
s
 not-null
.
)

Multiple Catch with a Single Try

· Place both of these catch statements in your code.

using System;

class TryIt
{
 public static void Main()
 {
 (
(
arr[
2])
 is zero.
)
) int[] arr = new int[3];

 try
 {
 Console.WriteLine(3/arr[2]);
 (
If you don’t need to access its properties you can just have:
catch
(
DivideByZeroException
)
) }

 catch (DivideByZeroException e)
 {
 Console.WriteLine(e.Message);
 }
 (
Generally the more specific error
catch
es are placed first.
)
 catch (IndexOutOfRangeException e)
 {
 Console.WriteLine(e.Message);
 }

 (
This will catch any OTHER exception which may occur
) catch (Exception e)
 {
 Console.WriteLine(e.Message);
 }

 }
}
 (
T
his
“general”
catch
 block must come AFTER the
specific
 catch blocks.
)

throw

Throw your own error! This can be useful for debugging.

using System;
class Program
{
 public static void Main()
 {
 try
 {
 throw (new DivideByZeroException());
 }
 catch (DivideByZeroException e)
 {
 Console.WriteLine(e.Message);
 }
 }
}

26
E:\Sites\una\CSsharp\CSLesson9ver4.doc
image2.png
[Mainwindow 1ol x|

image47.png
Help

image48.png
WPF Styles

image49.png
WPF Resources

image50.png

image51.png

image3.png
EAM TOOLS TEST ARCHITEC
2 - C - bt

image52.png
SampieTie

SnapsToDevicePixels
Sty

Tablndex

Ty
Teskbareminto
Template

Tite

a

2147483647

SampleTitie
.

image53.png

image54.png
o e oy

ublic Maimdindow() b A TemplatedParent null

3 FTie -5 QView ~ "DataContextSample’
InitializeCompone & ToolTip null

| < 1ms elapsed s DataContert_[@View < (SrmpleFambC NamWindon] T

image55.png
Window e

Window dimensions:

image56.png
Name | <No Name>

e Window

" Amange by: Name =

| Fontstyle Normal

| FontWeight Normal
ForceCursor a

Grid.IsSharedsizeS... []

Height

HorirontalAlanm.

image57.png
13:00:18

image4.png

image58.png

image59.png

image60.png
Player: XX

image61.png
X

X
X

image62.png

image63.png
Winner: X

image64.png
Winner: X
| Play Again |

image65.png
| edthehorse / jack ' Pubiic

> Code (@ lssues 11 Pullrequests (® Actions [Projects
P main v | P lbanch ©0tags
@ edthehorse Add files via upload
[READMEmd Initial commit

O WPFTicTaczip Add files via upload

READMEmd

jack

0 wiki

@ Security |2 Insights

Go to file

Create new file

d file

X Pin

8 Settings

Add file ~ u

D2

la

28 minut

image5.png
@ o-ud@
Search Soluton Explorer (Ct1+:)

31 solton MyWRF* (1 project)
< @ mywer
b K propertes
b *H References
D app.config
b D) aopami
4 [R) MamWindow.xenl
4 1) Mamwindon.xam.c
b #3 Mainwindow

o &

image66.png
W MainWindo

image67.png

image68.png

image69.png

image70.png
O oW & @

GhidComponent ntalized al 10.35.52

Wr Blazor!!!

image71.png
Microsoft.AspNetCore.Components.WebView.Wpf

image72.png
indexchtmi FileProperies
o
R
suid Acton [
Copy o Output Copy aiways

image73.jpeg

image74.jpeg

image75.png
(N C:\Program
bout time

image76.png
Streamfriter mytile = File.C
myFile.WriteLine ("about ttim
myFile. @ GetlifetimeSenice +
© Getlype
© InitilizeLfetimeService
K Newtine
© Tostring

- mzan @ Wite
© Writehsync

cem; @ Witeline

sem. 105 @ WiitelineAsyne -
e e e

image77.png
public static void Main()
B

StrearEritar muTiia = Fila Crast

nyFil @ Quick Actions and Refactorings...

ZYFLL Ef Rename..
! Remove and Sort Usings

Peck Definition

image78.png
namespace System.IO

K

// This ciass impiements a Texcricer for writing chara
77 Thss o aessgnes cor character outper in & parcicein
77 anencas tne Sesesn clase e desiamed Sor pyee snpat
pubiie ciass Sceeamiriier : TeeHe:

: @ QuickActions and Rt

// For UTE-8, the values of 1K

/] tite seream mutter size srer
/) ercommance Zor in verme of|D_GolDenion

image79.png
8] Microsoft Visual
about time

image80.png

image81.png
Open With - myWPF.exe:

[Resource Edtor

image82.png
Edt View Tools Help
4 2~ ANSI (Defau)]

00 01 02 03 04 05 06 07 05 09 0a 0b Oc 0d Oc OF
00000000 61 62 6F 75 74 20 74 69 60 65 0d 0a about time..

image83.png
| s

image84.png
00000000
00000010
00000020

00 01 02 03 04 05 06 07 06 03 0a 0b oc 0d 02 OF
90 00 00 00 01 00 00 00 02 00 00 00 03 00 00 00
04 00 00 00 05 00 00 00 05 00 00 00 07 00 00 00
08 @0 60 00 09 60 08 00

image85.png
o s nor oo

image86.png

image6.png
Error List Output Server Explorer

]]
s 1 mxae
T Bauindow x:Class
2

3

A il

5 B <Grid>

sl </orids

7 [<suindous

“

=

"MyWPF . Mainkindow”

hittp://schemas.microsoft. com/winfx/2006/xaml/presentation”
/5chemas .mi crosoft . con/winfx/2006/xam1"
‘Mainkindow" Height="350" Width="525">

image87.png
\X\CSChap@9\CommandL ineDemo\bin\Debug\net6 . @>CommandL ineDemo
1lo

image88.png
<X > CSChap09 > CommandLineDemo » bin > Debug » net6d

~ Name Date m
T CommandLineDemodepsison ono2
er-main & CommandineDemo.di onou2

tongoDBCRUD [CommandLineDemo.exe 07/04/2

image89.png
I(\X\CSChap@9\CommandLineDemo\bin\Debug\net6.0>CommandLineDemo edg,

image90.png
Hello ed

image91.png
2] exp - Microsoft Visual Studio (Administrator)
Fle Edt Vew Pokct | Bud Debug Team Toos
48 Add Windows Form..

image92.png

image93.png
» Applcation
> Build

> Package

b Code Analysis
4 Debug

b Resources

Debug

General

Resources

‘The management of launch prof|
the link below, via the Debug m
Standard tool bar.

Open debug launch profiles Ul

Command line arguments

Command line arguments to pass
fines,

e

Working directory
Path to the working directory whe

image94.png
Hello ed

image95.png
ERROR: Attempted to divide by zero.
luays do this what ever.
nd this

image96.png
Aluays do this what ever.
and this

image7.png

image97.png
ERROR: System.DivideByZeroException: Attempted to divide by zero.
at Exceptions.Program.Main(String[] args) in C:\X\CSChap@9\Exceptions\Program.cs:

image98.png
ERROR: at Exceptions.Program.Main(String[] args) in C:\X\CSChapeo\Exceptions\Program.cs:line 12

image99.png
static
B
inty =

Console.WriteLine (x.ToString ()
B

Exception Unhandled
System.DivideByZeroException: ‘Attempted to divide by zero.

Show Call Stack | View Details | Copy Details | Start Live Share ses:
b Exception Settings

image100.png
System Exception
Exception Condition

AccessViolationException Itis thrown when try to read or write protected memory.

AaareaateFxcention Renrecente ane or mare errare that occtr durina annlication

image101.png

image102.png
& file://IC: Mocuments and Settings/C
[Attenpted to divide by zero.

image8.png
[r—

image9.png

image10.png
<ezfid>

image11.png
S<Windpw x:Class="myWPF.MainWindow"
xmlns="http://schemas.micros:

image12.png

image13.png
Mairlindow:

image14.png
on Explorer
@ o-ud@@dm ©
Search Soluton Explorer (Ct1+:)

R Solution MyWPF' (1 project)
4 [mywer
b K properties
b *m References
8 App.config
D App.xaml
[8) MainWindow.xaml
4) MainWindow.xam.cs
b #3 Mainwindow

»

image15.png
MhEledE»>EnuE

Nar
</6rid>
</windows

TextBox
5 A1 VPF Controls
X ponr = e
yPF Hainiindow”
E Sorder /schemas .microsoft . con/winfx/2086/xaml /presentation”
Button http://schenas .microsoft. com/winfx/2006/xaml”
B Coerdr ainktindow” Height="214" Width="331"3
<Grid Height="153" Width="211">
2 cenes <Button Content="Button" Heigh "29,77,0,0"
Checkox buttonl” VerticalAlignment “button] Click™ />
& Combobox ,34,0,0"

image16.png
g Neme tesodd

Type Textsox
‘Search Properties

Arrange by: Category
> Brush
b Appearance

image17.png
Button

image18.png
private void button1_Click(obj

€
o

T % Texmox
o textBoxt

% TextChange

image19.png

image20.png
| Mainwindow

image21.png
<Button

Button" HorizontalAlignment:
82,168,0,0" VerticalAlignment:

Left" Height="49"
Top" Wideh:

155"

<TextBox Name="textBox1" Horizontalilignment:

image22.png
o

@3 MainWindow

image23.png
Window

image24.png
XAML overview (WPF .NET)

image25.png
R _ @ Application Insights -

‘Comment out the selected lines. (Ctri+K, Ctrl+C)

image26.png
Type Grid

Amange by: Name -

Category
© Name

Source

OverndesDefault
RenderTransfom
RenderTransfom.
Resources
Rowbefnions

ame | <No ame> ¢

No Brush

om 0793
(Collcton)

(Collecton)

image27.png
Rowbefinition Collection Editor: RowDefinitions

Ttems Properties.
== =
i - =
e =
P
T .

LILILI RowDefinition . ﬂl “ M:“l‘a“sws _ b

image28.png
T §
o
@ °
o

image29.png
RowDefinition Collection Editor: RowDefinitions

image30.png
s

=0k

=T

image31.png
4 Layout
Height

image32.png

image33.png
B WrapPanel

image34.png

image35.png

image36.png
015.png File Properties

Build Action Resource
‘Copy to Output Directory.

image37.png

image38.png
WPF CONTROLS USING C#

Ac ion in WPF Toolkit

image39.png

image1.png
i Sortby: [S=felt | [

Installed Templates
vz A| Windows Foms olcation

e

image40.png

image41.png

image42.png
Shapes and Basic Drawing in WPF
Overview

image43.png

image44.png

image45.png
Orientation

-8-x

image46.png

