5 Work, energy, and power Answers to practice questions

Question	Answer	Marks
1 (a)	Power is equal to the rate of work done.	1
1 (b) (i)	The tension in the cable is equal to the weight because the net force is zero.	1
	tension = $mg = 1500 \times 9.81$	1
	tension = 1.47×10^4 N	1
1 (b) (ii)	$power = F v = mg \times v$	1
(-, (,	power = 1500 × 9.81 × 1.2	1
	power = $1.77 \times 10^4 \text{ W}$	1
2 (a)	kinetic energy = $\frac{1}{2}$ × mass × speed ²	1
2 (b) (i)	initial KE = $\frac{1}{2}$ × 3.0 × 10 ⁻² × 200 ² (= 600 J)	1
	final KE = $\frac{1}{2}$ × 3.0 × 10 ⁻² × 50 ² (= 37.5 J)	1
	Loss in KE = $600 - 37.5$	
	Loss in KE = 562.5 J	1
2 (b) (ii)	work done = (loss in) KE	
	$a = \frac{(v^2 - u^2)}{2s}$ $F \times 1.5 \times 10^{-2} = 562.5$ $a = (-)1.25 \times 10^6$	1
	$F \times 1.5 \times 10^{-2} = 562.5$	'
	$a = (-)1.25 \times 10^{\circ}$ force = 3.75 × 10 ⁴ N	1
2 (c)	Measure the mass <i>m</i> of the student using scales.	1
2 (0)	Measure the distance <i>x</i> between two fixed markers using a tape measure	1
	(or metre rule) and the time <i>t</i> taken for the student to travel between these	
	two markers using a stopwatch.	
	Determine the speed v using $v = \frac{x}{t}$.	1
	The kinetic energy is determined using $E_K = \frac{1}{2} m v^2$	1
3 (a)	total energy of a (closed) system remains constant	1
	or Energy cannot be created or destroyed (it can only be transferred into other	
	forms)	
	or	
	total initial energy = total final energy	
3 (b)	work done = force × distance moved	1
	in the direction of the force Unit: N m or J	
3 (c) (i)	kinetic energy → heat	1
3 (c) (ii)	$(E = \frac{1}{2} m v^2)$	
,,,,	$8.4 \times 10^{16} = \frac{1}{2} \times 3.0 \times 10^8 \times v^2$	1
	1	1
	$v^{2} = \frac{2 \times 8.4 \times 10^{16}}{3.0 \times 10^{8}} \text{ or } v = \sqrt{\frac{2 \times 8.4 \times 10^{16}}{3.0 \times 10^{8}}}$ $v = 2.37 \times 10^{4} \text{ m s}^{-1}$ $8.4 \times 10^{16} = F \times 200$	
	$v = 2.37 \times 10^4 \mathrm{m s}^{-1}$	
3 (c) (iii)		1
	$F = \frac{8.4 \times 10^{16}}{200}$	1
	force = $4.2 \times 10^{14} \text{N}$	1
4 (a)	base unit for force = base unit for mass (kg) × base unit for acceleration	
	$(m s^{-2})$	1
	base unit for force = kg m s ⁻²	
	base unit for work done = base unit for force (kg m s ⁻²) × base unit for	1
	distance (m)	ı
	base unit for work done = kg m ² s ⁻²	1

5 Work, energy, and power Answers to practice questions

Question	Answer	Marks
4 (b) (i)	speed $v = \frac{12}{8.0}$	1
	2.0	1
	$E_{\rm k} = \frac{1}{2} m v^2 = \frac{1}{2} \times 70 \times \left(\frac{12}{8.0}\right)^2$	1
4 (1) (11)	$E_{\rm k} = 79 \rm J$	
4 (b) (ii)	$h = 12 \sin 32^{\circ}$	1 1
	$E_p = mgh = 70 \times 9.81 \times (12 \sin 32^\circ)$	1
4 (1) (**)	$E_{\rm p} = 4.37 \times 10^3 \rm J$	
4 (b) (iii)	$P = \frac{4.37 \times 10^3}{8.0}$	1
	P = 546 W	1
5 (a)	The initial energy of the skydiver is gravitational potential energy.	1
	As he descends, there is loss of gravitational potential energy and gain in	4
	kinetic energy.	1 1
	At steady (terminal) velocity, the kinetic energy remains the same. The loss of gravitational potential energy is equal to energy transferred to	·
	the air as kinetic energy or as heat.	1
5 (b)	rate of work done = $Fv = mg \times v$	1
` ,	rate of work done = $80 \times 9.81 \times 45$	1
	rate of work done = 3.53 × 10 ⁴ W	1
6 (a)	Energy is defined as the capacity to do work.	1
0 (5)	Power is the rate of work done (or rate of energy transfer).	1
6 (b)	A power of 1 watt is equal to 1 joule of work done per second.	1
6 (c) (i)	gain in GPE = mgh = $(70 \times 8) \times 9.81 \times 120$	1 1
6 (c) (ii)	gain in GPE = 6.59×10^5 J minimum power $P = \frac{\text{total work done}}{\text{time}}$	1
	$P = \frac{[(70 \times 8) + 1500] \times 9.81 \times 120}{55}$	
	$P = 4.4 \times 10^4 \text{ W}$	1 1
7 (a) (i)	P = 4.4 × 10 VV	1
<i>τ</i> (α) (ι)	average speed = $\frac{5000}{900}$ (= 5.56 m s ⁻¹)	1
	kinetic energy = $\frac{1}{2} m v^2 = \frac{1}{2} \times 70 \times \left(\frac{5000}{900}\right)^2$	1
	kinetic energy = 1080 J	
7 (a) (ii)	loss in GPE = $mgh = 70 \times 9.81 \times 520$	1
7 (0) (iii)	loss in GPE = 3.57 × 10 ⁵ J Energy is dissipated as work is done against resistive forces; hence the	1
7 (a) (iii)	loss in GPE is not equal to the average KE of the runner.	ı
7 (b) (i)	The total energy of a closed system remains constant – energy can neither	1
- (1.) (11)	be created nor destroyed.	
7 (b) (ii)	gain in KE = loss in GPE	1 1
	$\frac{1}{2}mv^2 = mgh \text{or} v = \sqrt{2gh}$	ı
	$v = \sqrt{2 \times 9.81 \times 520} \text{ m s}^{-1}$ (more than 100 m s ⁻¹ , if there are no losses)	1
8 (a)	loss in GPE = $mgh = 72 \times 9.81 \times 60$	1 1
8 (h)	loss in GPE = 4.238×10^4 J	1
8 (b)	$KE = \frac{1}{2} m v^2 = \frac{1}{2} \times 72 \times 20^2 = 1.44 \times 10^4 \text{ J}$	1
	work done against resistive forces = $(4.238 - 1.440) \times 10^4$	1
8 (c)	work done against resistive forces = 2.798 × 10 ⁴ J	1
8 (c)	distance travelled = $\frac{60}{\sin(35)}$ =104.6 m	1
	$2.798 \times 10^4 = F \times 104.6$ (work done = Fx)	1
	F = 270 N	

5 Work, energy, and power Answers to practice questions